CR-68 SERVICE NOTES

SPECIFICATIONS

OUTPUT LEVEL
OdBm max @ Vol. max Accent min
OUTPUT IMPEDANCE
Hi: 220k-ohm Lo: 10k-ohm
TRIGGER PULSE OUTPUT
On: +l5V Off: OV
POWER CONSUMPTION
8 watts
DIMENSIONS
260(W) x 275(D) x $180(\mathrm{H}) \mathrm{mm}$
WEIGHT
4.5 kg
** Note that there are two versions of SLR322:
upward throw and downward throw

Panel no. 240 (072-240)

Pot. EVHC.OAP25B14 (026-021)

**

Switch SLR322 (001-264) upward]

Switch no.
SCK-41097
$(001-273)$

Switch SRAl015
$(001-230)$
Switch SRAl01B
$(001-229)$

Switch HSW-0372-01-030 (001-206)

Jacks SG7622
Buttons no. 8 Grey no. 89 Blue no. 88 Yellow no. 87 Green no. 86 Red no. 85 White
(009-012)

COMPUTER BOARD GL-10

The uPD8048 is an 8-bit parallel computer fabricated on a single sillicon chip. The 8048 contains a lk x 8 ROM program memory, a 64 x 8 RAM memory, 27 I/O lines, an 8-bit timer/counter and clock circuits.
Used on this board is a uPD8048C-015 version in which program and data dedicated to the CR-68 are stored in the program memory.

1. SCANNING for IDENTIFYING PANEL SWITCH SETTINGS

The uPD8048 reads panel switch settings by scanning the lines through Port 2 (P24-P27) of ICIO, IC8 (74LS138, Decoder) and Port 1 (P1O-P17) of IClO. The output from IC8 (Binary-to-octal decoder) goes through one of sroperly arranged switches and matrix to port 1. For example let's assume that SWING switch is depressed. When A input of IC8 is high and B, C and G2B inputs are low as shown in Fig. l. The output of 1 goes low and other outputs go high.
Since Port 1 (PlO-P17) functions now as an input port and 1 of IC8 is low with SWING switch on, only PlO of IClO goes low. ICIO reads this condition of Port I and identifies that SWING switch is depressed. By repeating such scanning, the computer can identify every switch setting in sequence.
This scanning and reading, in STOP mode, are performed continously in very short periods by pulses with durations of several microsecons,bur after START switch is pressed, this scanning is performed once a measure

2. SENDING OUT RHYTHM PATTERNS

After panel settings are identified as described above, the data corresponding to the identification is selected from contains of the ROM and fed into Port 1 and Port 2.
Tow 74LSl38's (IC8 and IC9) are used in parallel to constitute a binary-to-hexadecimal decoder. In this case, Port 1 of IClO functions as an output port.

3. VARIATION TURNED ON WITH MANUAL BUTTON

Since the computer reads data once in one measure, if MANUAL button is pressed during the period between one reading and another, a circuit is required to memorize the switching, which consists of IC4 (74LSOO) and other components.
IC4a and IC4b constitute an RS flip-flop which is reset when START/STOP button is tapped to start the rhythm unit. When reset in this way, pin 3 of IC4a goes high, and pin 6 of IC4b goes low and hereafter this condition is held.
In reading, with MANUAL button off, pin 6 of IC4b remains low and pin 8 of IC4c is held high independent of the condition of pin 10 of IC4c. When MANUAL button is pressed, pin 5 of IC4b immediately goes low and RS flip-flop is set. Pin 3 of IC4a goes low and pin 6 of IC4b goes high and this condition is

When a negative going pulse is sent out from 4 of IC8 while reading switch positions, the pulse is inverted by IC2c and this inverted positive pulse is fed to pin 10 of IC4c. Since pin 9 of IC4c is kept high, a negative going pulse is sent out from pin 8 of IC4c and fed into Port 1 through D209. Thus, the computer detects that MANUAL button has been pressed. Immediately after reading, the computer sends out a negative going pulse from 0 of IC8 to reset RS flipflop. To prevent malfunction, this pulse (after invertion by IC2a) and a pulse from ALE of IClO are NANDed to produce a reset pulse. see Fig. 2

4. CLOCK GENERATOR IC3e, IC3f

This circuit,a clock generator from which pulses are emitted to synchronize the operations carried out by the computer, is a CR oscillator consisting of IC3e, IC3f and other components. The oscillator generates clock signals of about 3 MHz which are fed to XTAL pin of IClO.

5. MASTER OSCILLATOR QLOI, Q102

This oscillator determines the tempo of the rythm and is a multivibrator consisting of Q101, Q1O2 and other components, whose oscillation period is variable from loms - 200ms with TEMPO control VR2.
6. START CIRCUIT IC5b, ICla - ICld, IC2b

This circuit consists of IC5b (D flip-flop) and other components. The output "Q" on pin 1 of IC5b is connected to $\mathbb{T l}$ of IClO.
Immediately after POWER switch is set to ON a short positive going pulse with the time constant of R212 and C208 is generated at pin 11 of ICld and resets IC5b. Q on pin 1 goes low and \bar{Q} on pin 2 goes high. Consequently, when POWER switch is set to $O N$, IClO is always set in the idling mode. (When Tl of IClO is low, the computer stops all functions except scanning).
When START button is pressed, a positive pulse is generated at pin 4 of IClb which is fed into pin 3 of IC5b. Q goes high and \bar{Q} goes low. Then $T l$ of IClO goes high to•start the rhythm unit.
The one shot pulse generator consisting of ICla, IClc, IC2b and other components detects the leading edge of an output waveform from Q on pin 1 of IC5b and generates a pulse with a duration of about 30 ms which resets the master oscillator when the rhythm unit starts. see Fig. 3

To send out clock pulses with 8 beat and 16 beat to TRIGGER OUT jack, a circuit is required to divide the output signals from the master oscillator into $1 / 3$ and $1 / 6$. The circuit consists of four MCl4013B's (D flip-flop, IC7a, IC5a, IC6a, and IC6b) and other components. IC7a, used as an inverter, shapes output waveforms from the master oscillator to prevent the divide-by-3 circuit from malfunctioning. The singals are fed into the divide-by-3 circuit consisting of IC5a and IC6b to be converted to signals with 16 beat and sent from Q on pin 1 of IC6b.
Signals fed from \bar{Q} on pin 2 of IC6b to $C P$ on pin 11 of IC6a are divided again to be converted to signals with 8 beat and sent out from Q on pin 13 of IC6a. see Fig. 4

VOICING BOARD VG-12

1. LATCH ICl -- IC3

This circuit, consisting of three 74LS175 flip-flops, take output pulses to be latched from Port 1 and Port 2 through IC2d and IC2e (clock), and take pulses from the master oscillator to clear the preceding latch, producing 5V positive going pulse, i.e. rhythm pattern, with the same duration as output pulse of the master oscillator.
The output pulses from the flip-flops are converted by Q25-Q35 into negative going pulses with a $+15 \mathrm{~V}-0 \mathrm{~V}$ swing and fed into inputs of the voicing circuits.
see Fig. 5

2. ACCENT ©IRCUIT Q21, Q24, VR14

This circuit is used to add accent to a rhythm according to a preset accent pattern by changing the sound level at the output amplifier. The circuit consists of the ACCENT (VR14), Q21, Q24 and other components. An accent pulse from \bar{Q} on pin 3 of ICl passes through Q21 and then is differentiated and intergrated to be converted to a proper envelope signal which is fed into the gate of FET (Q24).
Q24 is off when a signal is not provided at the gate. In this case, the voltage of the output signal from Q9 is divided by the ratio of Rl 37 (68 k -ohm) to the input impedance of Q1O and is fed into Q1O. When a signal is fed into the gate, Q24 is turned on.
With ACCENT control at 10 , most the signal flows into the accent potentiometer and Q24, but very little into R137, giving a high level output signal which is used to add accent.

3. LEAKAGE SOUND KILLER Q20, Q23

These circuits are designed to kill sound from the voicing circuits generated by transient voltage when power is turned on or off. When power is on, Q20 will not function normally until C79 charges enough in respect to the emitter.
The voltage drop at the gate of Q23 is quicker than it is at the drain or source after trun, so that Q23 is shut off.

CONNECTION DIAGRAM
DIP (TOP VIEW)

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

F4013 TRUTH TABLES

SYNCHRONOUS INPUTS		OUTPUTS	
CP	D	Q_{n+1}	\bar{Q}_{n+1}
J	L	L	H
S	H	H	L

Conditions: $S_{D}=C_{D}=$ LOW

ASYNCHRONOUS INPUTS		OUTPUTS	
S_{D}	C_{D}	Q	$\overline{\mathrm{Q}}$
L	H	L	H
H	L	H	L
H	H	L	L

[^0]F4001 QUAD 2-INPUT NOR GATE

F4001
LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

DECODERS/DEMULTIPLEXERS

SN54LS138, SN54S138 . . J OR W PACKAGE SN74LS138, SN74S138 . . . J OR N PACKAGE (TOP VIEW)

${ }^{\prime}$ LS138 S138

'LS138, 'S138
FUNCTION TABLE

INPUTS					OUTPUTS							
ENABLE		SELECT										
G1	G2*	C	8	A	Yo	V1	Y2	V3	V4	V5	Y6	Y7
X	H	X	X	\mathbf{X}	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$\cdot G 2=G 2 A+G 2 B$
$H=$ nigh level, L = low level, $X=$ irrelevant

SN54175, SN54LS175, SN54S175 . . J UK W PALKAGE SN74175, SN74LS175, SN74S175 . . . J OR N PACKAGE (TOP VIEW)

QUADRUPLE D-TYPE FLIP-FLOPS

	NPUTS		OUTP	UTS
CLEAR	CLOCK	D	0	$\overline{\mathbf{O}}+$
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	0_{0}	\bar{a}_{0}

$H=$ high level (steady state)
$L=$ low level (steady state)
$x=$ irrelevant
$\hat{f}=$ transition from low to high level
$Q_{0}=$ the level of Q before the indicated steady state
input conditions were established
$t=\cdot 175$, 'LS 175 , and 'S 175 only

HEX INVERTERS

QUADRUPLE 2-INPUT positive-nand gates

CHECK \& ADJUSTMENT

SCOPE CONNECTION
l through ll: as illustrated Q13, Q14 : V IN -- to collector. H -- Internal TRIG with proper time base.

VOICE to be adjusted	Connect scope to	FREQUENCY			DECAY TIME		AMPLITUDE		$\begin{gathered} \text { set } \\ \text { BALANCE } \\ \text { at } \end{gathered}$			
		Adjust	for		Adjust	for	Adjust	$\begin{aligned} & \text { for } \\ & \text { V-pp } \end{aligned}$				
			ms	Hz								
BASS DRUM	1	VR7	16	62.5	VR8	100	*	1.4	full-counterclockwise			
LOW CONGA	2	VR5	4.8	208	VR6	100	*	1.4				
LOW BONGO	3	VR3	2.5	400	VR4	40	*	0.6				
HIGH BONGO	4	VRI	1.66	600	VR2	40	*	0.7				
COW BELL H	Q13 C	VR9	1.25	800	shift scope V IN from VOLUNE, H IN to Internal				```n"*" adjustable just check```			
COW BELL L	Q14 C	VR10	1.8	555								
COW BELL	5	restore scope connection to previous			*	60	*	0.5				
RIM SHOT	6	C9	0.676	1,480	*	5	*	4.4				
CLAVES	7	C4	0.38	2,630	*	18	*	0.7				
MARACAS	8	adjusting VRl2 on any one voice makes all			*	18	VR12	1.5	fullclockwise			
HI-HAT	9				*	50	VR12	1.5				
CYMBAL	10				*	250	VR12	1.5				
SNARE DRUM	11				*	60	VRII	1.0				
		IV pp 20msec after sound initiation; SNARE only			AMPLITUD		DECAY TIME					

Figures in the table show factory standard and may be slightly deviated for personal taste or to meet frequency response of an amlifier being used.

081-117	Cabinet no.117
lll-020	Base no.20 (foot)
$072-240$	Panel no.240
$076-356$	Nameplate no.356
	rear above jacks
$061-224$	Chassis no.224 main
$061-233$	Chassis no.233 sub
	GL-lo mounting
$061-225$	Chassis no. 225 rear

KNOBS PUSH BUTTONS

COILS \& TRANSFORMERS

$022-030$	Coil no. 30	45 mH
$022-033$	Coil no. 33	3 R
700 mH		
$022-124 \mathrm{~N}$	PT no.124N	100 V
$022-124 \mathrm{C}$	PT no.124C	117 V
$022-124 \mathrm{D}$	PT no.l24D	$220 / 240 \mathrm{~V}$

PCBs
148-016A RS-16A etch mask 052-431A 142-010A GL-lOA etch mask 052-429A 143-012A VG-12A etch mask 052-430A 149-102 0P-102 etch mask 052-432

ICs

020-141 020-106 020-108 020-138 020-124 020-120 020-169 020-041

179-022
74LSI75N or CMOS40175
7805UC regulator +5 V
7815UC regulator +15 V
74LSI38N
74LS04N
74LSOON
MCI4001BCP
MC14013BCP
MPD-8048C-15
TRANSISTORS
017-106 2SCl815-GR
017-021 2SC900-F
017-046 2SC828-R NZ
selected for noise
017-016 2SK30A-GR FET
DIODES
018-059
018-082
019-013

1S1588
W-02 bridge 1.5 A
SLP-131B

SWITCHES

POTENTIOMETERS
026-023 EVHCOAP25B54 50kB BALANCE 026-024 EVHCOAP25B15 l00kB ACCENT
O26-021 EVHCOAP25B14 10kB VOLUME
028-996 EVH2CAP25B54 50kB TEMPO PC
Trimmers
028-001 EVTR4A00(SR19) 500-ohm
023-003 EVTR4A00 (SR19) 5k
028-004 EVTR4AOO (SR19) 10k
028-005 EVTR4AOO(SR19) 20k
028-006 EVIR4A00 (SR19) 50k
CAPACITORS
032-095 0.47uF 35V K tant.
035-109 ECQM6103KZ 600V polyester
FUSES
008-024 SGA 0.5A prim/sec +5V 100/117V
008-026 SGA lA sec +l5V 100/117V
008-056 CEE l00mAT prim 220/240V
008-060 CEE 250mAT sec 220/240V
MISCELLANEOUS
012-003 Fuse Clip TF-758
012-040 IC Socket ICC $30-040-350 \mathrm{G} 40$ pin
009-012 Jack SG7622
064-134 Holder no. 134 line cord
047-003 Line Cord Strain Relief
047-023 Line Cord Clamp 1702B
120-001 Long Nut no.l $3 x 10 \mathrm{~mm}$ stand-off
053-289 Flat Cable no. 2895 pin
053-290 Flat Cable no. 2904 pin

* Resistors, mylars and ordinary electrolytic capacitors are omitted.

2320 DAVIE B FORT LAUDERDA.

Fig. 3

Fig. 1

Fig. 5
Refer to the function table on page 1

GL-10B(142-010B) VIEW from FOIL SIDE Serial No. 822000 and up

Portions of pattern not shown remain unchanged. Both GL-1OA and GL-1OB correspond to the same circuit diagram since some components are attached on the foil side or connected in series on GL-10A and accommo dated on GL-10B in place

CAUTION: Always handle MOS ICs while wearing an earth grounded fistband to prevent failure of ICs due to electrostatic dis charge. All test equipment must also be earth grounded.

RHYTHM TEMPO ADJUSTMENT

1. Connect scope to Q102 collector (Master Oscillator).
2. Turn TEMPO knob full clockwise (QUICK)

Adjust VRl for loms between fall or rise of squares.
3. Turn TEMPO knob full counterclockwise (SLOW)

Turn VR3 in the direction in which the period becomes shorter than 200ms. Stop, then rotate VR3 slowly in the reverse direction until the period is 200 ms .
4. Repeat steps 3 and 4 .

If bottom portion is insuficiently saturated, replece Q101 and Q102
lomsec (QUICK) 200msec (SLOW)

SLOW ROCK

FOX TROT

ENKA

BOSSA NOVA

SAMBA

BEGUINE
REUNBA

ROCK-1

ROCK-2

ROCK-3

ROCK-4

DISCO-1

*

[^0]: L $=$ LOW Level

 - Positive-Going Transition
 - Don't Care
 $\hat{Q}_{n+1}=$ State After Clock Positive Transition

